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Abstract

This paper gives a method of computing polynomials for sequences by
analysing the differences within the sequence. Rigorous justification for
the method is provided along with an example.
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1 Introduction

Given a sequence such as 5, 10, 25, ... which polynomials generate this sequence
of numbers? Consider f(x) = 5x2−10x+10 then f(1) = 5, f(2) = 10, f(3) = 25
so f can be said to generate this sequence. Given this, does that mean f(4) = 50
is the next number in the sequence?

Consider the polynomial g(x) = x3 − x2 + x + 4 then g(1) = 5, g(2) =
10, g(3) = 25 so g can be said to generate this sequence also. However g(4) = 56.
So what is the next number in the sequence? Is it 50 or 56 or something
completely different?

Well the question is too ambiguous. Above are two examples of polynomials
which generate the start of the sequence but differ on the fourth term. In actual
fact you can pick any number you want to be the fourth term and there would
exist a polynomial that generates the sequence 5, 10, 25 and the fourth term
would be what ever number you like.

In this article, I am going to present a simple method for computing these
polynomials, which hides the complex methods of solving systems of linear equa-
tions taught in higher education Maths courses. Rigorous justifications for the
method will also be provided.

By the end of this article you should be able to calculate a polynomial which
generates the sequence 1, 1, 1, n where n can be any number you wish.
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2 Differences

Definition 2.1. For this article we define fi := xi.

The above definition is used to make the article more easily readable.

Definition 2.2. We define the first order difference of the polynomial f at a
point x to be f(x + 1) − f(x). We denote the first order difference as D1f(x)
so we have:

D1f(x) := f(x+ 1)− f(x)

Definition 2.3. We denote the i-th order difference of the polynomial f at a
point x to be Dif(x). We define the i-th order difference as

Dif(x) := Di−1f(x+ 1)−Di−1f(x)

For the first order difference D1f(x) it is acceptable to drop the 1 and just
denote it as Df(x). We also define D0f(x) to be f(x).

The following diagram demonstrates the concept of n-th order differences.

f(1) f(2) f(3) f(4) f(5)

Df(1) Df(2) Df(3) Df(4)

D2f(1) D2f(2) D2f(3)

D3f(1) D3f(2)

D4f(1)

1 2 4 8 16

1 2 4 8

1 2 4

1 2

1

It is worth noting that D(Dnf)(x) = Dn+1f(x). This can be seen by letting
g(x) = Dnf(x) and then writing out Dg(x) from the definition above.

Lemma 2.1. Let g1, g2, ..., gn be n polynomials and α1, α2, ..., αn be real num-
bers and let f be the polynomial f(x) :=

∑n
i=1 αigi then

Df(x) =

n∑
i=1

αiDgi(x)
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Proof.

Df(x) = f(x+ 1)− f(x)

=

n∑
i=1

αigi(x+ 1)−
n∑

i=1

αigi(x)

=

n∑
i=1

(αigi(x+ 1)− αigi(x))

=

n∑
i=1

αi (gi(x+ 1)− gi(x))

=

n∑
i=1

αiDgi(x)

Corollary 2.1.1. Let g1, g2, ..., gn be n polynomials and α1, α2, ..., αn be real
numbers and let f be the polynomial f(x) :=

∑n
i=1 αigi and let j be a positive

integer then

Djf(x) =

n∑
i=1

αiDjgi(x)

Proof. We prove the corollary by induction. For j = 1 we know this is true from
lemma 2.1.

Assume this is true for all integers less than j then

Djf(x) = Dj−1f(x+ 1)−Dj−1f(x)

=

n∑
i=1

αiDj−1gi(x+ 1)−
n∑

i=1

αiDj−1gi(x)(by the induction hypothesis)

=

n∑
i=1

(αiDj−1gi(x+ 1)− αiDj−1gi(x))

=

n∑
i=1

αi (Dj−1gi(x+ 1)−Dj−1gi(x))

=

n∑
i=1

αiDjgi(x)

The above corollary just confirms that the n-th order difference operator is
linear. That is to say, that if we have a polynomial 2x3 + 7x, then applying the
difference operator on the whole polynomial would be the same as applying the
difference operator separately to 2x3 and 7x and adding the results together.

We look at n-th order differences for a range of polynomials below and
summarise the results in a table. We analyse one of these polynomials, namely
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f(x) = 2x3 − x + 1, below. We use the sequence generated by computing
f(1), f(2), f(3), f(4), f(5) and f(6) in each case.

2 15 52 125 246 427

13 37 73 121 181

24 36 48 60

12 12 12

0 0

The following table has the results of performing the above analysis on a
number of polynomials. As it only makes sense to evaluate Dnf at a specific
point, we will put a * for values of Dnf where the value changes depending on
x. If it is constant then we record the value.

Polynomial Df D2f D3f D4f D5f
2x3 − x+ 1 * * 12 0 0
2x3 − 5x2 − 7x+ 10 * * 12 0 0
2x3 * * 12 0 0
x3 + x2 − x+ 1 * * 6 0 0
x3 + 75x2 − 10 * * 6 0 0
x3 * * 6 0 0
5x+ 6 5 0 0 0 0
5x+ 1 5 0 0 0 0
3x+ 9 3 0 0 0 0
3x+ 2 3 0 0 0 0
x2 − x+ 1 * 2 0 0 0
x2 + 5x+ 16 * 2 0 0 0
3x2 + 9x+ 23 * 6 0 0 0
3x2 − 7x+ 12 * 6 0 0 0
x4 + x3 + x2 + x+ 1 * * * 24 0

Looking at the table above there are some patterns that might be worth
investigating. First of all it is clear that we eventually get a non-zero constant
difference followed by 0 for successive differences. It is clear that once we get a
constant value difference the successive differences will be 0 as these successive
differences are defined by the previous differences and the differences between a
constant sequence is 0.

Looking at polynomials of the same degree we see that we get the non-zero
constant value at the same n-th order difference. That is for cubics (degree 3)
we seem to get a non-zero constant value for D3f . For quadratics (degree 2)
the non-zero constant appears at D2f and for linear polynomials (degree 1) the
non-zero constant value appears at D1f . The only quartic (degree 4) polynomial
analysed has the non-zero constant value at D4f .

4



It would appear that for a polynomial of degree n that Dnf is a non-zero
constant value and that Djf = 0 for j > n.

(1)
If we look at polynomials of the same degree and with the same coefficient

of the highest term then it also looks like they have the same non-zero constant
value. For example 2x3−x+ 1, 2x3− 5x2− 7x+ 10 and 2x3 all have D3f = 12.
For x3 + x2 − x + 1, x3 + 75x2 − 10 and x3 we have D3f = 6. It appears for
polynomials of degree 3 that the value of D3f is equal to 6 times the coefficient
of the highest term.

If we look at the polynomials of degree 2 we see a similar pattern that D2f
is equal to 2 times the coefficient of the highest term and similarly for the
polynomials of degree 1 we have Df is 1 times the coefficient of the highest
term. Finally looking at our only polynomial of degree 4 we have that D4f is
24 times the coefficient of the highest term.

The numbers 1, 2, 6, 24 are interesting numbers to appear as 1 = 1, 2 = 1×2,
6 = 1 × 2 × 3 and 24 = 1 × 2 × 3 × 4. We have a notational shortcut for
these numbers that are the product of consecutive numbers. We call them
factorials. We write 1! to be 1, 2! to be 1 × 2, 3! to be 1 × 2 × 3 and n! to be
1× 2× 3× ...× (n− 1)× n.

If we summarise our results above using the factorial notation, with c rep-
resenting the coefficient of the highest degree term in the polynomial, then we
have:

Polynomials of degree 1 have D1f equal to 1!× c

Polynomials of degree 2 have D2f equal to 2!× c

Polynomials of degree 3 have D3f equal to 3!× c

Polynomials of degree 4 have D4f equal to 4!× c

It would appear that for a polynomial of degree n, with the coefficient of the
highest term equal to c that Dnf is a non-zero constant value and that Dnf =
n!c.

(2)
Assuming statements 1 and 2 to be true we will go through an example of

how to calculate a polynomial that generates a sequence. We will later try to
prove statements 1 and 2.

Example

Let 2, 9, 22, 41, 66 be the start of a sequence. Let us assume that this sequence
is generate by a unknown polynomial that we will refer to as s(x). That means
our sequence is the sequence s(1), s(2), s(3), s(4) and s(5).
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We do not know what degree s(x) is at the moment. We will start by
analysing the differences until we get 0’s.

2 9 22 41 66

7 13 19 25

6 6 6

0 0

0

We see that the second order difference, D2s, is 6 and the higher order dif-
ferences are 0. This would imply that our sequence is generated by a polynomial
of degree 2 and that it’s highest order coefficient is 6

2! = 3.
So we know that s(x) = 3x2 + ax + b where a and b are unknown at the

moment.
Now define s1(x) := s(x)− 3x2. Since s(x) = 3x2 + ax+ b, this would mean

that s1(x) = ax + b. s1(x) is a polynomial of lower degree than s. If we could
generate the sequence s1(1), s1(2), s1(3), s1(4), s1(5) then we could analyse the
differences of this sequence to work out a, which gives us more information
about s(x).

How can we calculate the sequence s1(1), s1(2), s1(3), s1(4), s1(5)?
That’s easy. From the definition of s1(x) we have s1(1) = s(1) − 3 × (1)2.

We know s(1) as this is the first number in our original sequence! Similarly for
s1(2), s1(3), s1(4) and s1(5).

This new sequence generated by s1(x) is calculated to be 2− 3× 12, 9− 3×
22, 22−3×32, 41−3×42, 66−3×52. This new sequence is −1,−3,−5,−7,−9.

Let’s analyse the differences in this sequence.

-1 -3 -5 -7 -9

-2 -2 -2 -2

0 0 0

0 0

0

We see that the first order difference, D1s1, is -2 and the higher order differ-
ences are 0. This would imply that our sequence is generated by a polynomial
of degree 1 (as expected) and that it’s highest order coefficient is −2

1! = −2.
So we know that s1(x) = −2x+ b where b is unknown at the moment. This

also means that we now know a so we have more information on s(x). So far
we have s(x) = 3x2 − 2x+ b. We still need to work out b.
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If we repeat the procedure above and define s2(x) := s1(x) − (−2x). From
the definition of s1(x) we know that s2(x) = b. Can we calculate the sequence
s2(1), s2(2), s2(3), s2(4), s2(5). Well yes, we know s1(x) for x = 1, 2, 3, 4, 5 as
that was our second sequence we calculated. So we can calculate the sequence
s2(1), s2(2), s2(3), s2(4), s2(5) as −1 + 2 × 1,−3 + 2 × 2,−5 + 2 × 3,−7 + 2 ×
4,−9 + 2× 5 so we have the sequence 1, 1, 1, 1, 1. This means that our b is 1.

This leaves us with s(x) = 3x2 − 2x+ 1. We can plug in the values 1, 2, 3,
4 and 5 to check that it generates 2, 9, 22, 41, 66.

We will formalise this method below.

Method

Assume we have a sequence of numbers a1,1, a1,2, a1,3, ..., a1,n. The first sub-
script number just represents the iteration of the following instructions. At the
start we are on the 1st iteration and we will use the variable i to refer to the
iteration. So i = 1 to start off with.

1. Analyse differences of the sequence ai,1, ai,2, ..., ai,n until we have that the
ji

th-order difference is a non-zero constant for some ji. Let ci be the
non-zero constant.

2. Define a polynomial si(x) = ci
ji!
xji .

3. Calculate a new sequence ai+1,1, ai+1,2, ..., ai+1,n by defining ai+1,d =
ai,d − si(d) for d = 1, 2, ..., n.

4. If the sequence ai+1,1, ai+1,2, ..., ai+1,n is all 0 then stop.

5. Go to step 1 and increase the iteration number, i, by 1.

When this procedure terminates we would have defined polynomials s1(x), s2(x), ..., si(x)
(one for each iteration of the instructions).

Define s(x) =
∑i

k=1 sk(x) = s1(x) + s2(x) + ...+ si(x) then this polynomial
s(x) is a polynomial that generates our original sequence ai,1, ai,2, ..., ai,n

Justification

To see this, we just need to show that s(i) = a1,i for i = 1, 2, ..., n.
To show this we will unwind the sequences we have generated during the

procedure.
On the last iteration we ended up with a sequence of all 0’s. So for i =

1, 2, ..., n we have (assuming j is the last iteration):
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0 = aj,i

= aj−1,i − sj−1(i)

= aj−2,i − sj−2(i)− sj−1(i)

... = a1,i − s1(i)− s2(i)− ...− sj−2(i)− sj−1(i)

= a1,i − (s1(i) + s2(i) + ...+ sj−2(i) + sj−1(i))

= a1,i − s(i)

Since a1,i − s(i) = 0 for all i = 1, 2, ...., n it follows that s(i) = a1,i for all
i = 1, 2, ...., n. This means that our polynomial s(x) does generate the sequence.

However, we haven’t shown that this procedure will terminate. i.e. We
will eventually get a sequence of all zeros in an iteration and this is crucial for
rigorous justification.

We know that we can find a polynomial of degree n that generates a sequence
of length n+ 1 as we can solve the system of linear equations of n+ 1 unknowns
with n+ 1 equations.

That is to say given a sequence a1, a2, ..., an, an+1 then we could write a
polynomial that generates this sequence as s(x) = cn+1x

n + cnx
n−1 + ... +

c3x
2 + c2x + c1 then generate n + 1 equations by plugging in the values of the

sequence.

s(1) = a1

s(2) = a2

...

s(n) = an

s(n+ 1) = an+1

If we have a sequence of length n+ 1 that can be generated by a polynomial
with degree less than n then you will find that n-th order difference will be
0 and will be a non-zero constant for a lower order difference so without loss
of generality assume we have a sequence that is generated by a polynomial
s(x) = cn+1x

n + cnx
n−1 + ...+ c3x

2 + c2x+ c1 and that cn+1 6= 0.
Then by statement 2, in our procedure we will define s1(x) to be s1(x) =

cn+1x
n and so when we generate the next sequence we will be generating a

sequence which is generated by s(x)− s1(x), let’s call it n(x). By definition we
would have n(x) = s(x)− s1(x) =

(
cn+1x

n + cnx
n−1 + ...+ c3x

2 + c2x+ c1
)
−

cn+1x
n = cnx

n−1 + ... + c3x
2 + c2x + c1. So n(x) is a polynomial of degree

strictly less than the degree of s(x).
This means that in each iteration we are generating a new sequence which

is generated by a polynomial of degree strictly less than the last. Because of
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this we will eventually end up with a sequence which is generated by a degree
0 polynomial (a constant value). At this stage the iteration will generate a new
sequence which is equal the constant value minus itself which will be a 0. This
means that the procedure will terminate.

This still all assumes that statements 1 and 2 are correct and so we will
spend some time trying to prove them now.

Lemma 2.2. Let fn(x) = xn then ∀i > n then

Difn(x) = 0

Proof. We prove this by induction on n. Let n = 0 then f0(x) = x0 = 1 so
D1f0(x) = f0(x + 1) − f0(x) = 1 − 1 = 0. It is clear since D1f0(x) = 0 that
Djf0(x) = 0 for j > 1 also.

Assume that it is true for all positive integers up to and including n then we
need to show it is true for n+ 1.

We will show that Dn+2fn+1(x) = 0 as it follows that Djfn+1(x) = 0 for
j > n+ 2

Dn+2fn+1 = Dn+1Dfn+1 = Dn+1

(
(x+ 1)n+1 − xn+1

)
= Dn+1

( n∑
i=0

(
n+ 1

i

)
xi
)

= Dn+1

( n∑
i=0

(
n+ 1

i

)
fi
)

=

n∑
i=0

(
n+ 1

i

)
Dn+1fi (by corollary 2.1.1)

=

n∑
i=0

(
n+ 1

i

)
0 (by the induction hypothesis)

= 0

Corollary 2.2.1. Let fn(x) = xn then

Dnfn(x) = n!

Proof. We prove this by induction on n. Let n = 0 then D0f0(x) = f0(x) =
x0 = 1 = 0! so D0f0(x) = 0!.

Assume that it is true for all positive integers less than n then we will show
it is true for n.
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Dnfn = Dn−1 (Dfn)

= Dn−1 ((x+ 1)n − xn)

= Dn−1

(
n−1∑
i=0

(
n

i

)
xi

)

= Dn−1

(
n−1∑
i=0

(
n

i

)
fi

)

=

n−1∑
i=0

(
n

i

)
Dn−1fi (by corollary 2.1.1)

=

(
n

n− 1

)
Dn−1fn−1 (by lemma 2.2)

=

(
n

n− 1

)
(n− 1)! (by the induction hypothesis)

= n!

Theorem 2.3. Let f(x) =
∑n

i=0 cix
i then Dnf(x) = cnn!

Proof.

Dnf = Dn

(
n∑

i=0

cix
i

)

=

n∑
i=0

ciDn

(
xi
)

= cnDn (xn) (by lemma 2.2)

= cnn! (by corollary 2.2.1)
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